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Abstract

A problem of sound radiation by an absolutely rigid object, moving with respect to the surrounding fluid,
is considered on the basis of the Lighthill’s equation for aerodynamic sound. An integral representation of
the radiated acoustic field is utilized, where the field is characterized as the sum of three fields, generated by
a volume distribution of monopoles and by distributions of monopoles and dipoles on the surface of the
rigid object. It is shown that, due to a discontinuity of Lighthill’s stress tensor on the rigid boundary, a layer
of surface divergence of hydrodynamic stresses on the boundary must be taken into account when
evaluating the volume integral over Lighthill’s quadrupole sources. When the contribution of the surface
divergence is included in the solution of Lighthill’s equation, amplitudes of the monopole and dipole sound
radiated by the rigid object are shown to depend on the potential components of the normal velocity and
the pressure on the rigid surface. The obtained solution is compared with Curle’s solution for this problem,
which establishes that the sound radiation by a rigid object is determined by the force exerted by the object
upon the fluid. Both solutions are applied to two known problems of sound scattering and radiation by a
rigid sphere in variable pressure and velocity fields. It is shown that predictions based on the obtained
solution are equivalent to the results known from literature, whereas Curle’s solution gives predictions
contradicting the known results. It is also shown that the Ffowcs Williams and Hawkings equation, which
coincides with Curle’s equation for an immoveable rigid object, does not lead to the correct predictions as
well.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The problem of sound radiation by a rigid object in a fluid flow is one of central importance in
aeroacoustics. A significant success in solving this problem was achieved in 1952, when Lighthill
published his well-known work [1], where he derived an equation which determines that sound

ARTICLE IN PRESS

*Corresponding author.

E-mail address: alexei.zinoviev@adelaide.edu.au (A. Zinoviev).

0022-460X/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00021-X



radiated by turbulent flow in a fluid without solid boundaries has quadrupole characteristics. In
1955 Curle [2] extended Lighthill’s theory to include flow with solid boundaries and showed that
an immoveable solid object in a turbulent flow radiates dipole sound. According to Curle, the
amplitude of the dipole sound is determined by a distribution of the total force per unit area over
the solid boundaries. For an acoustically compact object Curle’s theory establishes that the dipole
sound amplitude is proportional to the total force acting upon the fluid by the rigid boundaries.
Curle’s theory is often used in the form of Ffowcs Williams–Hawkings equation [3], which takes
into account motion of the rigid object.

This article is devoted to the problem of sound radiation by a rigid object in a fluid. The
necessity to revisit this problem was determined by two factors. First, experimental data obtained
by the second author and his co-authors [4] to verify Curle’s solution did not converge to Curle’s
prediction; and second, a recently published article [5] argues that the present aeroacoustic theory
contains some fundamental flaws. Thus, the purpose of the current article is to analyze the
problem of sound radiation by a rigid object and to compare the solution so obtained with the
known solutions for this problem provided by Curle [2] and Ffowcs Williams and Hawkings [3].

The authors realize that due to the wide acceptance of the Curle–Ffowcs Williams–Hawkings
theory, some readers may consider the conclusions of the current article controversial.
Nevertheless, experimental evidence would suggest that the problem of sound generation by a
solid object in fluid flow would benefit from some reconsideration.

2. Lighthill’s theory of aerodynamic sound

Lighthill [1] considered the general problem of sound generation and propagation in a uniform
fluid medium. He showed that the equations of continuity and momentum for such a medium
could be reduced to the following equation with respect to the fluid density, r:

r0 x; tð Þ ¼ r� r0 ¼
1

4pc20

Z Z Z
Vtot

1

x� yj j
@2

@yi@yj

Tij y; t �
x� yj j

c0

� �
dy; ð1Þ

where Tij is Lighthill’s stress tensor, given by

Tij ¼ rvivj þ pij � c20rdij ; i; j ¼ 1; 2; 3: ð2Þ

In Eqs. (1) and (2) c0 is the speed of sound in the fluid at rest, vi is the ith component of the
velocity of the fluid, dij is Kronecker’s delta function, r0 is the density of the fluid at equilibrium,
x ¼ x1; x2; x3ð Þ is the co-ordinate of the observation point, y ¼ y1; y2; y3ð Þ is the co-ordinate of
the source point, tensor pij is the stress tensor and the integral is taken over the total volume, Vtot;
of the fluid. Indices repeated in a single term are to be summed from 1 to 3. For example, @vk=@xk

must be understood as @v1=@x1 þ @v2=@x2 þ @v3=@x3:
Lighthill demonstrated that Eq. (1) could be reduced to the following equation:

r0 x; tð Þ ¼ r� r0 ¼
1

4pc20
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@xi@xj

Z Z Z
Vtot

Tij y; t �
x� yj j

c0

� �
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x� yj j
dy; ð3Þ
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which represents the well-known idea of Lighthill that aerodynamic sound radiated by a turbulent
flow in a fluid without boundaries has quadrupole characteristics and the amplitude of the
quadrupole sources is proportional to the value of the tensor Tij :

3. Application of Lighthill’s theory to a fluid with solid boundaries

3.1. Spatial layout

Let the problem of sound radiation by a rigid object be solved for a fluid with the spatial layout
shown in Fig 1. It is assumed that there is only one solid object of boundary, S, which has no
sharp edges. The surface, S1, at which Tij ¼ 0; encloses the boundary S. The volume, V0, bounded
by S and S1, includes all regions in the fluid where Tija0: It is assumed that Tija0 at S. The object
is stationary with respect to the observer, but relative motion of the object and the surrounding
fluid is allowed. The observation point, x, lies outside the volume V0, while the integration point,
y, is within the volume V0.

3.2. Formulation of the solution

In considering the influence of solid boundaries on sound generation by a solid object in a fluid
flow, the acoustic field radiated by the flow is represented as a sum of Lighthill’s solution (1) and
an integral over the solid boundary, S:

r0 x; tð Þ ¼
1

4pc20

Z Z Z
Vtot

@2Tij

@yi@yj

dy

r
þ

1

4p

Z Z
S
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r

@r0

@n
þ

1

r2
@r

@n
r0 þ

1

c0r

@r

@n

@r0

@t

� �
dS yð Þ; ð4Þ

where r ¼ x� yj j and n is the outward normal from the fluid.
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Fig. 1. Layout of the fluid containing the rigid object. Vtot is the total volume of the fluid, S is the surface of the rigid

object, S1 is a surface enclosing all regions where Tija0; V0 is a volume bounded by S and S1, x is the observation point,

y is the source point.
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After introducing the integral formulation (4), the next step in solving the problem of sound
radiation by a rigid object is to transform the volume integral into a more convenient form by
replacing the derivatives over the source point, y, with derivatives over the observation point, x.
To transform Eq. (1) to Eq. (3), Lighthill [1] considered the source distribution @2Tij=@yi@yj in
detail. At the same time, he mentioned that the same result could be achieved by using the
divergence theorem twice. The latter procedure was used by Curle [2] and is utilized here also.

Before the divergence theorem can be applied, the following transformations of volume
integrals must be carried out:Z Z Z

Vtot

@2Tij

@yi@yj

dy

r
¼

Z Z Z
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@

@yi
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@yj

1
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� �
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Z Z Z
Vtot

@Tij

@yj

dy

r
; ð5Þ
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dy

r
¼

Z Z Z
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Tij
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r

� �
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@

@xj

Z Z Z
Vtot

Tij

dy

r
: ð6Þ

These equations can be derived easily by differentiating the first terms on the right-hand parts as a
product of two functions, while bearing in mind that r ¼ x� yj j and @r=@xi ¼ �@r=@yi:

The first integrals on the right-hand of Eqs. (5) and (6) are to be transformed here using the
divergence theorem. This theorem is one of the foundations of vector analysis and can be found in
many textbooks; for example, in Refs. [6,7]. However, due to the importance of the divergence
theorem for the present analysis, it is useful to introduce the theorem here.

3.3. Formulation of the divergence theorem

The divergence theorem states that the integral of the flux out of a closed surface, SV , of a
vector field, F xð Þ ¼ F x1; x2; x3ð Þ ¼ F1; F2; F3ð Þ; is equal to the volume integral of the divergence
of the field, F, over the volume, V, enclosed by SV [7]. For a bounded closed region, V, whose
boundary, SV , is a closed regular surface, and for continuously differentiable functions Fi; i ¼
1; 2; 3; the divergence theorem is formulated as follows [6]:Z Z Z

V

@F1

@x1
þ

@F2

@x2
þ

@F3

@x3

� �
dV ¼

Z Z
SV

F1l1 þ F2l2 þ F3l3ð Þ dSV ; ð7Þ

or, equally, as Z Z Z
V

r 	 F xð Þ dV ¼
Z Z

SV

F xð Þ 	 n dSV ; ð8Þ

where n ¼ l1; l2; l3ð Þ is the outward normal to the surface SV :
An essential idea for this analysis is that the divergence theorem (7) can be extended to the case

where the functions Fi are not continuous on the boundary SV [8]. Let Fi and their derivatives be
continuous on both sides of SV : Simultaneously let Fi have a discontinuity at SV ; so that limiting
values, Fiðx þð ÞÞ and Fiðx �ð ÞÞ; exist on the positive and negative side of SV ; respectively.

In this case, the notion of the surface divergencerSV
	 F of the vector field F ¼ F1; F2; F3ð Þ may

be introduced:

rSV
	 F xð Þ ¼ n 	 F x þð Þ� �

� F x �ð Þ� �� �
: ð9Þ
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For the discontinuous vector field F, the divergence theorem holds if r 	 F in Eq. (8) is replaced
with its surface analogue, rSV

	 F; at the surface SV [8]. Then the divergence theorem can be
formulated as follows:Z Z Z

V

r 	 F xð Þ dV ¼
Z Z

SV

F x �ð Þ� �
	 n dS þ

Z Z
SV

rSV
	 F xð Þ dS: ð10Þ

3.4. The theory of Curle–Ffowcs Williams–Hawkings

According to Lighthill [1], in formulas (5) and (6) the integration is carried out over the total
volume, Vtot; of the fluid. In all practical tasks, however, the integration can be done over any
finite volume, which includes all regions in the fluid where Tija0: Curle [2] used the volume V0

(Fig. 1) as the volume of integration to obtain the following volume integrals:Z Z Z
Vtot

@

@yi

@Tij

@yj

1

r

� �
dy ¼

Z Z Z
V0

@

@yi

@Tij

@yj

1

r

� �
dy; ð11Þ

Z Z Z
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@

@yj

Tij
1

r

� �
dy ¼

Z Z Z
V0

@

@yj

Tij
1

r

� �
dy; ð12Þ

which he transformed by means of the divergence theorem into surface integrals over bounding
surfaces S and S1:Z Z Z

V0

@

@yi

@Tij

@yj

1

r

� �
dy ¼

Z Z
S

li
@Tij

@yj

dS yð Þ
r

þ
Z Z
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li
@Tij

@yj

dS yð Þ
r

; ð13Þ

Z Z Z
V0

@

@yj

Tij

1

r

� �
dy ¼

Z Z
S

ljTij

dS yð Þ
r

þ
Z Z

S1

ljTij

dS yð Þ
r

: ð14Þ

Indeed, Eqs. (13) and (14) can be reduced to the divergence theorem (7) for vector fields, F1 ¼
F11;F12;F13ð Þ and F2 ¼ F21;F22;F23ð Þ; determined by

F11 ¼
@T1j

@yj

1

r
; F12 ¼

@T2j

@yj

1

r
; F13 ¼

@T3j

@yj

1

r
; ð15Þ

F21 ¼ Ti1
1

r
; F22 ¼ Ti2

1

r
; F23 ¼ Ti3

1

r
: ð16Þ

As Tij and its derivatives are equal to zero on the surface S1, Eqs. (13) and (14) become:Z Z Z
V0

@

@yi

@Tij

@yj

1

r

� �
dy ¼

Z Z
S

li
@Tij

@yj

dS yð Þ
r

; ð17Þ

Z Z Z
V0

@

@yj

Tij
1

r

� �
dy ¼

Z Z
S

ljTij
dS yð Þ

r
; ð18Þ

and, due to Eqs. (11) and (12):Z Z Z
Vtot

@

@yi

@Tij

@yj

1

r

� �
dy ¼

Z Z
S

li
@Tij

@yj

dS yð Þ
r

; ð19Þ
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Z Z Z
Vtot

@

@yj

Tij
1

r

� �
dy ¼

Z Z
S

ljTij
dS yð Þ

r
: ð20Þ

Substituting Eqs. (19) and (20) into Eqs. (5) and (6), it is possible to obtain the following
representation of the integral over Lighthill’s sources:Z Z Z

Vtot

@2Tij

@yi@yj

dy

r
¼

@2

@xi@xj

Z Z Z
Vtot

Tij

r
dyþ

@

@xi

Z Z
S

ljTij

dS yð Þ
r

þ
Z Z

S

li
@Tij

@yj

dS yð Þ
r

: ð21Þ

The first term in Eq. (21) is Lighthill’s integral (3), which determines the quadrupole sound
produced by turbulence in the absence of rigid objects. The last two terms in Eq. (21) can be
understood as contributions of layers of dipole and monopole sources on the rigid boundary.

If Eq. (21) is substituted into the general solution (4), one can obtain the following equation,
derived by Curle [2]:

4pc20r
0 x; tð Þ ¼

@2

@xi@xj

Z Z Z
Vtot

Tij

r
dyþ

@

@xi

Z Z
S

lj rvivj þ pij

� � dS yð Þ
r

�
Z Z

S

li
@

@t
rvið Þ

dS yð Þ
r

: ð22Þ

For the solid immoveable surface, S, where the normal velocity of the fluid is zero, the above
equation turns into the following, which constitutes Curle’s fundamental result [2]:

4pc20r
0 x; tð Þ ¼

@2

@xi@xj

Z Z Z
Vtot

Tij

r
dy�

@

@xi

Z Z
S

Pi

r
dS yð Þ; ð23Þ

where Pi ¼ �ljpij is the ith component of the force per unit area exerted on the fluid by the rigid
surface, S, and Tij and Pi are taken at retarded times, t � r=c0: According to Eq. (23), the sound
radiated by a fluid flow in the presence of a rigid immoveable object, consists of two fields: (a) the
field of the volume distribution of quadrupoles of strength, Tij ; per unit volume, and (b) the field
of the surface distribution of dipoles of strength, Pi, per unit area.

Ffowcs Williams and Hawkings [3] extended Curle’s theory to the case where the rigid object is
moving. They derived an equation that takes the following form for a flow with small Mach
numbers:

4pc20r
0 x; tð Þ ¼

@2

@xi@xj

Z Z Z
Vtot

Tij

r
dyþ

@

@xi

Z Z
S

ljpij

dS yð Þ
r

�
@

@t

Z Z
S

r0Un

dS yð Þ
r

; ð24Þ

where Un is the normal velocity of the rigid boundary.

3.5. Discontinuity of Lighthill’s stress tensor on the rigid surface and its influence on the evaluation
of Lighthill’s integral

As shown in Section 3.3, the application of the divergence theorem to a vector field, F, depends
on the continuity of F on the surface of integration, which is the surface S in the case under
consideration. It can be concluded that the vectors F1 and F2; determined by Eqs. (15) and (16),
are discontinuous on S. On the one hand, on the exterior side of S the stress tensor Tij is not zero;
therefore in general, both vectors F1 and F2 are different from zero. On the other hand, on the
interior side of S Tij ¼ 0 due to the rigidity of the object. Consequently, both vector fields, F1 and
F2; are equal to zero. Thus, F1 and F2 have a break on the rigid surface, S, which is equal to the
values of these vectors on the exterior side of S. The surface divergence of F1 and F2 on the
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surface, S, in accordance with Eq. (9), is determined as follows:

rS 	 F1 yð Þ ¼ �n 	 F1 y �ð Þ� �
; ð25Þ

rS 	 F2 yð Þ ¼ �n 	 F2 y �ð Þ� �
; ð26Þ

where the positive side of the surface S is the internal side since the normal vector, n, is directed
outwards from the fluid. After the substitution of Eqs. (15) and (16), determining the vector fields
F1 and F2; Eqs. (27) and (28) can be written as

rS 	
@Tij

@yj

1

r

� �
¼ �li

@Tij

@yj

1

r
; ð27Þ

rS 	 Tij

1

r

� �
¼ �ljTij

1

r
; ð28Þ

As a result, the divergence theorem must be applied to the fields, F1 and F2; in its modified form
(10), rather than in its traditional form (8), with the volume V0 as the volume of integration. This
leads to the following equations, which take place of Eqs. (11) and (12):Z Z Z

Vtot

@

@yi

@Tij

@yj

1

r

� �
dy ¼

Z Z Z
V0

@

@yi

@Tij

@yj

1

r

� �
dyþ

Z Z
S

rS 	
@Tij

@yj

1

r

� �
dS yð Þ; ð29Þ

Z Z Z
Vtot

@

@yj

Tij

1

r

� �
dy ¼

Z Z Z
V0

@

@yj

Tij

1

r

� �
dyþ

Z Z
S

rS 	 Tij

1

r

� �
dS yð Þ: ð30Þ

If Eqs. (17), (18), (27) and (28) are substituted into the above equations, the following equations
are obtained: Z Z Z

Vtot

@

@yi

@Tij

@yj

1

r

� �
dy ¼ 0; ð31Þ

Z Z Z
Vtot

@

@yj

Tij
1

r

� �
dy ¼ 0: ð32Þ

The substitution of the above equations to Eqs. (5) and (6) lead to the conclusion that Lighthill’s
transformation of the volume integral in the absence of solid boundaries remains valid in the flow
where solid boundaries are present:Z Z Z

Vtot

@2Tij

@yi@yj

dy

r
¼

@2

@xi@xj

Z Z Z
Vtot

Tij

r
dy: ð33Þ

Thus, the expression for the amplitude of density fluctuations, r0; of the sound wave radiated by
the fluid containing the rigid object, takes the following form:

r0 x; tð Þ ¼
1

4pc20

@2

@xi@xj

Z Z Z
Vtot

Tij

r
dyþ

1

4p

Z Z
S

1

r

@r0

@n
þ

1

r2
@r

@n
r0 þ

1

c0r

@r

@n

@r0

@t

� �
dS yð Þ; ð34Þ

which represents the contribution of the current paper.
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3.6. An alternative way of the evaluation of the volume integral

It may be noted that Eq. (33), leading to the solution, Eq. (34), can be obtained also without
considering the layer of surface divergence. Indeed, since the surface S1 encloses all regions where
Tija0; the volume integrals can be described by the integrals over S1 only. In this case Eqs. (29)
and (30) become Z Z Z

Vtot

@

@yi

@Tij

@yj

1

r

� �
dy ¼

Z Z
S1

li
@Tij

@yj

dS yð Þ
r

; ð35Þ

Z Z Z
Vtot

@

@yj

Tij
1

r

� �
dy ¼

Z Z
S1

ljTij
dS yð Þ

r
: ð36Þ

As Tij ¼ 0 on S1, the integrals in the right-hand of Eqs. (35) and (36) are zeros, which leads
to Eqs. (31) and (32) and, in turn, to Eqs. (33) and (34). This procedure is considered in detail in
Ref. [9].

4. Comparison of the obtained solution with Curle’s equation

4.1. Comparison of the acoustic source terms

Evaluation of Eq. (34) and Curle’s solution (22) shows that both solutions contain the volume
integral over Lighthill’s quadrupole sources. Both equations also contain surface integrals that
describe the sound radiation produced by a layer of monopoles and a layer of dipoles on the
surface, S. However, the strength of these layers is determined differently.

Let the comparison of the two solutions be made for the linear approximation, so that the terms
of order, vivk; can be neglected. In Curle’s equation (22), the strength of the monopole layer is
described by the total normal velocity on the surface, which is zero for a rigid immoveable object,
while in Eq. (34) obtained here, the strength of the monopole layer is determined by the normal
derivative of the fluid density in the acoustic wave, radiated or scattered by the rigid object. In
other terms, the monopole term is determined by the normal component of the acoustic scattered
velocity vsc:

This result leads to the significant conclusion that monopole acoustic sources may exist on the
surface of an infinitely rigid immoveable object. For example, if there is a rotational (solenoidal)
velocity field or an external source of acoustic waves, the boundary conditions on the surface of
the object will require that the total normal velocity be equal to zero. At the same time, the
scattered velocity, vsc; may be different from zero, because it must satisfy the boundary condition
in combination with other velocity fields. These monopole sources can, apparently, produce
sound of higher multipoles, including sound with dipole directivity patterns, if they are in different
phases on opposite sides of the rigid object.

The strength of the dipole layer is also different in Curle’s equation (22) and in Eq. (34)
obtained here. According to Curle, the strength of the dipole layer is described by the total force
acting upon the fluid (which includes, by means of the tensor pij ; viscous forces), while in Eq. (34),
the strength of the dipole layer is determined by the density fluctuations in the scattered wave on
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the surface. In other terms, the strength of the layer of dipoles on the surface is determined by the
scattered acoustic component of the force, caused by density fluctuations in the scattered wave.

4.2. Applications of the obtained solution and Curle’s equation to two well-known sound scattering

and radiation problems

To demonstrate how the differences between Curle’s equation (22) and the obtained Eq. (34)
reveal in real-life applications, both equations are applied in this section to two simple acoustic
problems, the solutions of which are well known. These problems have been chosen for the
purpose of making obvious that Curle’s equation gives predictions for the amplitude of radiated
sound, which are different from known results, while predictions of the obtained equation
coincide with results known from literature. Application of the obtained equation to more
complex acoustic problems will be the subject of further publications.

4.2.1. Example 1. Sound scattering by a rigid sphere
Let Curle’s solution (23) be applied to a sound scattering problem; for example, to the well-

known case of plane wave scattering by a rigid immoveable sphere. This situation is described by
Eq. (23) if the volume, V0; where Tija0; is small and its distance from the solid object is large in
comparison with the acoustic wavelength. In these circumstances, the sound radiated by the
quadrupole sources in V0 can be considered as a plane wave near the solid object, and the problem
under consideration reduces to a problem of sound scattering. To avoid unnecessary complexity,
the rigid object is assumed to be a sphere of radius R0.

For a single frequency acoustic wave, with temporal dependence e�iot; the expression for the
density fluctuations in the scattered wave, determined by the second term in Curle’s equation (23),
can be written as follows:

4pc20r
0
Curle xð Þ ¼ �r 	

Z Z
S

P yð Þ
eik x�yj j

x� yj j
dS yð Þ; ð37Þ

where P is the total force per unit area, x ¼ rx; yx;jx

� �
is the radius vector of the observation

point, y ¼ ðry; yy;jyÞ is the radius vector of a source point on the surface, S, of the sphere, and
ðr; y;jÞ are the spherical co-ordinates with the origin in the centre of the sphere.

If the incident plane wave with velocity amplitude, U0; approaches the solid sphere from the
direction y ¼ p; the pressure, Pinc; in the incident plane wave can be written as

Pinc rx; yxð Þ ¼ r0c0U0e
ikrx cos yx : ð38Þ

The exact solution for the pressure in the scattered wave, Psc rx; yxð Þ; takes the form of a series of
spherical Hankel functions of the first kind and Legendre polynomials [10,11]. In the case of an
acoustically small sphere, for which kR0{1; Psc rx; yxð Þ can be shown to take the following form
on the surface of the sphere:

Psc R0; yxð Þ ¼ 1
2
r0c0U0kR0 i cos yx þ O kR0ð Þ2

� �
: ð39Þ

Thus, the total acoustic pressure, Ptot ¼ Pinc þ Psc; at kR0{1 can be written as follows:

Ptot R0; yxð Þ ¼ r0c0U0 1þ 3
2
ikR0 cos yx

� �
: ð40Þ
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Expanding the expression eik x�yj j= x� yj j into Taylor series and neglecting terms of order kR0ð Þ2

and higher, it can be shown that Eq. (37) can be reduced to

r0Curle xð Þ ¼ �
r0U0

4pc0

@

@zx

eikrx

rx

Z Z
S

cos yy þ
3

2
ikR0 cos2 yy

� �
1� ikR0 cos að Þ dS

� 	
; ð41Þ

where zx ¼ rx cos yx and a is the angle between the vectors x and y, determined by

cos a ¼ cos yx cos yy þ sin yx sin yy cos jx � jy


 �
: ð42Þ

Calculation of the surface integral in Eq. (41) leads to the following equation for Curle’s
prediction for the amplitude of the acoustic wave scattered by the sphere:

r0Curle xð Þ ¼ �
r0U0o2R3

0

c30

eikrx

rx

�
1

2
cos yx þ

1

3
cos2 yx

� �
: ð43Þ

Now Eq. (34), which was derived here, will be applied to the same problem of sound scattering
by a small rigid sphere. The scattered acoustic wave, determined by Eq. (34), is the sum of a field,
r0mon xð Þ; radiated by a layer of monopoles, and a field, r0dip xð Þ; radiated by a layer of dipoles on the
surface of the sphere:

r0sc xð Þ ¼ r0mon xð Þ þ r0dip xð Þ: ð44Þ

For a single frequency incident wave, the equations describing the two fields can be rewritten as
follows:

r0mon xð Þ ¼
1

4p

Z Z
S

eik x�yj j

x� yj j
@r0sc

@n
dS yð Þ; ð45Þ

r0dip xð Þ ¼ �
1

4p

Z Z
S

r0sc ry

eik x�yj j

x� yj j

� �
n yð Þ dS yð Þ: ð46Þ

For kR0{1; the density fluctuations and their normal derivative on the surface S can be
determined by the following equations:

@r0sc

@n
¼ io

r0

c20
U0 1þ ikR0 cos yð Þcos yþ O kR0ð Þ2

� �
; ð47Þ

r0sc R0ð Þ ¼
1

2

r0

c0
U0kR0 i cos yþ O kR0ð Þ2

� �
: ð48Þ

Substitution of Eqs. (47) and (48) into Eqs. (45) and (46) for kR0{1 gives:

r0mon xð Þ ¼
ior0U0

4pc20

eikrx

rx

Z Z
S

1þ ikR0 cos yy

� �
1� ikR0 cos að Þcos yy dS; ð49Þ

r0dip xð Þ ¼
ior0U0

8pc20

eikrx

rx

kR0

Z Z
S

1� ikR0 cos að Þcos yy cos a dS; ð50Þ
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where the angle a is determined by Eq. (42). If only the most significant terms with respect to kR0

and 1/r are retained in the integrals of Eqs. (49) and (50), the following expressions for r0mon xð Þ;
r0dip xð Þ; and r0sc xð Þ can be obtained:

r0mon xð Þ ¼ �
r0U0o2R3

0

3c30

eikrx

rx

1� cos yxð Þ; ð51Þ

r0dip xð Þ ¼
r0U0o2R3

0

6c30

eikrx

rx

cos yx; ð52Þ

r0sc xð Þ ¼ r0mon xð Þ þ r0dip xð Þ ¼ �
r0U0o2R3

0

3c30

eikrx

rx

1�
3

2
cos yx

� �
: ð53Þ

Comparison of Eq. (53) with Curle’s prediction described by Eq. (43) shows that the dipole
terms, proportional to cos yx are identical in both equations. However, in Eq. (53), the dipole
term is comprised of acoustic sources of two kinds: first, radiation generated by a surface
distribution of density fluctuations, determined by r0dip xð Þ; and second, the radiation generated by
a surface distribution of normal velocity, determined by r0mon xð Þ: The former sources are
represented as a layer of elementary dipoles, or a double layer, while the latter sources are
represented as a layer of elementary monopoles, or a single layer. The monopole sources generate
the dipole sound due to different phases on the opposite hemispheres.

The main difference between Eq. (53) derived here and Curle’s prediction expressed in Eq. (43)
is the presence of the monopole term in the scattered field. Indeed, in Eq. (53) there is a term
independent of the angle yx; while, according to Curle’s theory, the lowest multipole in the sound
generated by a rigid immoveable object is a dipole, which depends on the observation direction as
cos yx: Comparison of the two equations with well-known results from textbooks; for example,
from Refs. [12,13], leads to the conclusion that Curle’s claim, that the monopole component is
absent in the acoustic wave radiated by an absolutely rigid immoveable object, is incorrect.
Eq. (53) coincides with equations for the amplitude of the scattered sound wave published in Refs.
[12,13], while Curle’s prediction (43) differs from these equations by the absence of the monopole

term.
The second difference between Curle’s equation (43) and the obtained Eq. (53) is the presence of

a term proportional to cos2 yx: This term describes quadrupole sound and should not appear in
this analysis, which is restricted to terms of order no higher than kR0 [10].

4.2.2. Example 2. Sound generation by a rigid sphere in a variable velocity field

This section deals with a situation that is similar to sound scattering by a small rigid sphere
considered in the previous example. The difference between the two cases is that in this situation
the incident field is only a velocity field, so there are no pressure fluctuations in the incident field.
This situation may occur, for example, when a rigid sphere is submerged in a flow of low Mach
number and with a typical vortex size much larger than the diameter of the sphere. It is also
important to note that the sound radiation by a sphere in a variable, spatially uniform, velocity
field is equivalent to sound radiation by a sphere vibrating in the fluid which is at rest [13].
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Both the obtained solution of Eqs. (44)–(46) and Curle’s result of Eq. (37) can be applied to the
situation under consideration in the same way as in the first example. The pressure fluctuations on
the surface of the sphere are determined by the following equation [13]:

Ptot R0; yxð Þ ¼ 1
2
r0c0U0kR0 i cos yx þ O kR0ð Þ2

� �
: ð54Þ

Substitution of Eq. (54) into Eq. (37) gives the following expression for the density fluctuations in
the radiated sound wave on the basis of Curle’s solution:

r0Curle xð Þ ¼ �
r0U0

4pc0

@

@zx

eikrx

rx

Z Z
S

1

2
ikR0 cos2 yy

� �
1� ikR0 cos að Þ dS

� 	
; ð55Þ

where zx ¼ rx cos yx and cos a is determined by Eq. (42). Further calculations lead to the
following equation for Curle’s prediction of the amplitude of density fluctuations in the sound
wave radiated by a small solid sphere in a variable velocity field:

r0Curle xð Þ ¼ �
r0U0o2R3

0

c30

eikrx

rx

�
1

6
cos yx þ

1

3
cos2 yx

� �
: ð56Þ

The method of application of the obtained solutions (44)–(46) to the case under consideration is
analogous to the method used in the first example. Due to the spatial homogeneity of the incident
velocity field, the normal component of the fluid velocity of the radiated wave is determined by the
following equation,

@r0sc

@n
¼ io

r0

c20
U0 cos yx; ð57Þ

which, as opposed to Eq. (47), has only a zero order term with respect to kR0. The substitution of
Eq. (57) into Eq. (45) gives

r0mon xð Þ ¼
ior0U0

4pc20

eikr

r

Z Z
S

1� ikR0 cos að Þ cos yy dS; ð58Þ

and, after simplification:

r0mon xð Þ ¼
r0U0o2R3

0

3c30

eikrx

rx

cos yx: ð59Þ

The contribution of the layer of dipoles, r0dip; on the surface S is determined by the same equation
(52) as in the first example.

The substitution of Eqs. (59) and (52) into Eq. (44) gives the following prediction for the
amplitude of density fluctuations in the far field for an acoustic wave generated by a rigid sphere
in a variable velocity field:

r0sc xð Þ ¼
r0U0o2R3

0

2c30

eikrx

rx

cos yx: ð60Þ

Ref. [13] states that the problem of sound radiation by a rigid sphere in a variable velocity field
is equivalent to the problem of sound radiation by the sphere vibrating with equal amplitude, and
the solution of the latter problem is shown in many textbooks, including Refs. [11,13]. The
comparison of Eqs. (56) and (60) with the known solution demonstrates that the correct
prediction for the amplitude of density fluctuations is given by Eq. (60), which has been derived
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from Eq. (34), obtained in this article, while Curle’s prediction of Eq. (56) differs from the correct
result by a factor of 3.

5. Conclusions

The derivation of Curle’s equation for the amplitude of aerodynamic sound radiated by a rigid
immovable object in a fluid flow [2] has been examined in detail. The analysis showed that in
Curle’s calculations, the influence of the discontinuity of the Lighthill’s stress tensor, Tij ; on the
rigid surface has been erroneously omitted.

Taking account of the surface discontinuity of Lighthill’s stress tensor leads to an equation for
the amplitude of the radiated sound wave, which differs from Curle’s solution in two ways. First,
the obtained equation determines that the radiated sound wave consists of the fields radiated by
both dipole and monopole source distributions on the rigid surface, while, according to Curle, there
is only a dipole source distribution on the surface of a rigid immoveable object. Second, the
strength of the dipole sources in the obtained equation is determined only by the scattered
component of pressure, which is proportional to the amplitude of density fluctuations in the
scattered wave, while in Curle’s solution the strength of the dipole sources is determined by the
total pressure on the surface.

The current analysis shows that Curle’s equation for the amplitude of a sound wave radiated by
a rigid object in a fluid flow has been derived with significant mathematical inaccuracy. The
equation is shown to give incorrect predictions for the well-known problems of sound scattering
and radiation by a rigid sphere. In some situations, Curle’s equation may give results that coincide
with the correct ones; however, such coincidence is fortuitous. These conclusions apply also to the
Ffowcs Williams and Hawkings equation, which for an immoveable rigid object reduces to the
equation derived by Curle.
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